Remarks on ideal convergence

Artur Bartoszewicz Szymon Głąb Artur Wachowicz

Łódź Technical University

< 17 >

< 注 → < 注 →

æ

Artur Bartoszewicz, Szymon Głąb, Artur Wachowicz Remarks on ideal convergence

Preliminaries

Definition

A proper ideal $A \subset P(\mathbb{N})$ containing all singletons $\{n\}$, $n \in \mathbb{N}$, will be called admissible. By I^* we denote its dual filter.

イロト イヨト イヨト イヨト

æ

Preliminaries

Definition

A proper ideal $A \subset P(\mathbb{N})$ containing all singletons $\{n\}$, $n \in \mathbb{N}$, will be called admissible. By I^* we denote its dual filter.

Definition

We say that a sequence $x \in \mathbb{R}^{\mathbb{N}}$, $x = (x_n)_{n \in \mathbb{N}}$, is I-bounded, if there exists a set $K \in I^*$ such that the restriction $x_{|K}$ is bounded in usual sense.

Preliminaries

Definition

A proper ideal $A \subset P(\mathbb{N})$ containing all singletons $\{n\}$, $n \in \mathbb{N}$, will be called admissible. By I^* we denote its dual filter.

Definition

We say that a sequence $x \in \mathbb{R}^{\mathbb{N}}$, $x = (x_n)_{n \in \mathbb{N}}$, is I-bounded, if there exists a set $K \in I^*$ such that the restriction $x_{|K}$ is bounded in usual sense.

The set of all *I*-bounded sequences with standard operations +, \cdot is a vector space which we will denote by $\ell^{\infty}(I)$.

・ロト ・ 同ト ・ ヨト ・ ヨト -

A proper ideal $A \subset P(\mathbb{N})$ containing all singletons $\{n\}$, $n \in \mathbb{N}$, will be called admissible. By I^* we denote its dual filter.

Definition

We say that a sequence $x \in \mathbb{R}^{\mathbb{N}}$, $x = (x_n)_{n \in \mathbb{N}}$, is I-bounded, if there exists a set $K \in I^*$ such that the restriction $x_{|K}$ is bounded in usual sense.

The set of all *I*-bounded sequences with standard operations $+, \cdot$ is a vector space which we will denote by $\ell^{\infty}(I)$.

Definition

A sequence $x \in \mathbb{R}^{\mathbb{N}}$ is called 1-convergent to $t \in \mathbb{R}$ if for every $\varepsilon > 0$ we have $\{n \in \mathbb{N} : |x_n - t| \ge \varepsilon\} \in I$ (if such a t exists, then it is unique, and we write $t = I - \lim x$). By c(I) we denote the set of all 1-convergent sequences, and by $c_0(I)$ - the set of all sequences 1-convergent to 0.

Refolmulated problem

In FGT, Remark 2 the following seminorm was introduced:

$$\|x\|_{\infty}^{I} = \inf\{\lambda > 0 \colon (\exists K \in I^{*}) \ (\forall n \in K) |x_{n}| \le \lambda\}.$$

イロン イ部ン イヨン イヨン 三日

$$\|x\|_{\infty}^{\prime} = \inf\{\lambda > 0 \colon (\exists K \in I^*) \ (\forall n \in K) |x_n| \le \lambda\}.$$

For any admissible ideal I, we define an equivalence relation on $\ell^{\infty}(I)$:

$$\forall x, y \in \ell^{\infty}(I) \ \left(x \sim y \Longleftrightarrow \|x - y\|_{\infty}^{I} = 0\right).$$

ヘロン 人間 とくほど くほとう

$$\|x\|_{\infty}^{\prime} = \inf\{\lambda > 0 \colon (\exists K \in I^*) \ (\forall n \in K) |x_n| \le \lambda\}.$$

For any admissible ideal I, we define an equivalence relation on $\ell^{\infty}(I)$:

$$\forall x, y \in \ell^{\infty}(I) \ \left(x \sim y \Longleftrightarrow \|x - y\|_{\infty}^{I} = 0\right).$$

(Observe that $||x||_{\infty}^{I} = 0$ iff x is *I*-convergent to zero.)

$$\|x\|_{\infty}^{I} = \inf\{\lambda > 0 \colon (\exists K \in I^{*}) \ (\forall n \in K) |x_{n}| \leq \lambda\}.$$

For any admissible ideal *I*, we define an equivalence relation on $\ell^{\infty}(I)$:

$$\forall x, y \in \ell^{\infty}(I) \ \left(x \sim y \Longleftrightarrow \|x - y\|_{\infty}^{I} = 0\right).$$

(Observe that $||x||_{\infty}^{I} = 0$ iff x is *I*-convergent to zero.)

We may consider now the quotient normed space $\ell^{\infty}(I)/c_0(I)$ consisting of all equivalence classes $[x]_{\sim}$ for $x \in \ell^{\infty}(I)$.

$$\|x\|_{\infty}^{I} = \inf\{\lambda > 0 \colon (\exists K \in I^{*}) \ (\forall n \in K) |x_{n}| \leq \lambda\}.$$

For any admissible ideal *I*, we define an equivalence relation on $\ell^{\infty}(I)$:

$$\forall x, y \in \ell^{\infty}(I) \ \left(x \sim y \Longleftrightarrow \|x - y\|_{\infty}^{I} = 0\right).$$

(Observe that $||x||_{\infty}^{I} = 0$ iff x is *I*-convergent to zero.)

We may consider now the quotient normed space $\ell^{\infty}(I)/c_0(I)$ consisting of all equivalence classes $[x]_{\sim}$ for $x \in \ell^{\infty}(I)$.

The question is, if $\ell^{\infty}(I)/c_0(I)$ is complete for any admissible *I*.

æ

 $P_I = \{p \in Ult(P(\mathbb{N})): \bigcap p = \emptyset, I \subset p^*\}$ for for any admissible I. (It is known that P_I is a closed subset of $\beta \mathbb{N}$)

個 と く ヨ と く ヨ と …

 $P_I = \{p \in Ult(P(\mathbb{N})): \bigcap p = \emptyset, I \subset p^*\}$ for for any admissible I. (It is known that P_I is a closed subset of $\beta \mathbb{N}$)

 $C(P_I)$ - the Banach space of all continuous functions $f : P_I \to \mathbb{R}$, where topology in P_I is inherited from $\beta \mathbb{N}$.

イロト イポト イヨト イヨト

 $P_I = \{p \in Ult(P(\mathbb{N})): \bigcap p = \emptyset, I \subset p^*\}$ for for any admissible I. (It is known that P_I is a closed subset of $\beta \mathbb{N}$)

 $C(P_I)$ - the Banach space of all continuous functions $f : P_I \to \mathbb{R}$, where topology in P_I is inherited from $\beta \mathbb{N}$.

Theorem

For every admissible ideal $I \subset P(\mathbb{N})$, the spaces $\ell^{\infty}(I)/c_0(I)$ and $C(P_I)$ are isometrically isomorphic. Consequently, $\ell^{\infty}(I)/c_0(I)$ is a Banach space.

イロト イヨト イヨト イヨト

Sketch of the proof

Fix $I \subset P(\mathbb{N})$ and $x \in \ell^{\infty}(I)$.

Artur Bartoszewicz, Szymon Głąb, Artur Wachowicz Remarks on ideal convergence

<ロ> (日) (日) (日) (日) (日)

æ

Fix $I \subset P(\mathbb{N})$ and $x \in \ell^{\infty}(I)$. Let us define a function $f_x : \mathbb{N} \cup P_I \to \mathbb{R}$ by the formula

$$f_{x}(p) = \begin{cases} x_{p} & \text{for} \quad p \in \mathbb{N} \\ p^{*} - \lim x & \text{for} \quad p \in P_{I} \end{cases}$$

The function f_x is continuous (a topology in $\mathbb{N} \cup P_I$ is inherited from $\beta \mathbb{N}$).

▲祠 → ▲ 臣 → ▲ 臣 →

Fix $I \subset P(\mathbb{N})$ and $x \in \ell^{\infty}(I)$. Let us define a function $f_x : \mathbb{N} \cup P_I \to \mathbb{R}$ by the formula

$$f_{x}(p) = \begin{cases} x_{p} & \text{for} \quad p \in \mathbb{N} \\ p^{*} - \lim x & \text{for} \quad p \in P_{I} \end{cases}$$

The function f_x is continuous (a topology in $\mathbb{N} \cup P_l$ is inherited from $\beta \mathbb{N}$).

Now we can define the required function $\Phi : \ell^{\infty}(I)/c_0(I) \to C(P_I)$:

$$\Phi([x]_{\sim})=f_{x}|P_{I}.$$

イロト イポト イヨト イヨト

We say that a sequence $x \in \mathbb{R}^{\mathbb{N}}$ has finite I-variation if there is a set $K = \{k_1 < k_2 < \ldots\} \in I^*$ such that

$$Var(x_{ert K}) = \sum_{n=1}^\infty |x_{k_n} - x_{k_{n+1}}| < \infty.$$

By W(I) we denote the set of all sequences with finite I-variation.

We say that a sequence $x \in \mathbb{R}^{\mathbb{N}}$ has finite I-variation if there is a set $K = \{k_1 < k_2 < \ldots\} \in I^*$ such that

$$Var(x_{|\mathcal{K}}) = \sum_{n=1}^{\infty} |x_{k_n} - x_{k_{n+1}}| < \infty.$$

By W(I) we denote the set of all sequences with finite I-variation.

Definition

We say that a sequence $x \in \mathbb{R}^{\mathbb{N}}$ is restrictively *I*-convergent, if there exist $\ell \in \mathbb{R}$ and a set $K = \{k_1 < k_2 < ...\} \in I^*$ such that $\lim_{n \to \infty} x_{k_n} = \ell$. The set of all such sequences we denote by $c^*(I)$.

イロン イ部ン イヨン イヨン 三日

We say that a sequence $x \in \ell^{\infty}(I)$ is I-monotone if there is a set $K \in I^*$ such that $x_{|K}$ is monotone in the usual way.

We denote all such sequences by M(I).

We say that a sequence $x \in \ell^{\infty}(I)$ is I-monotone if there is a set $K \in I^*$ such that $x_{|K}$ is monotone in the usual way.

We denote all such sequences by M(I).

It is known [FGT] that

$$M(I) \subset W(I) \subset c^*(I) \subset c(I) \subset \ell^\infty(I).$$

- A IB N - A IB N - -

Theorem

If p = c then there is an admissible ideal I such that $M(I) = \ell^{\infty}(I)$.

We say that a sequence $x \in \ell^{\infty}(I)$ is I-monotone if there is a set $K \in I^*$ such that $x_{|K}$ is monotone in the usual way.

We denote all such sequences by M(I).

It is known [FGT] that

$$M(I) \subset W(I) \subset c^*(I) \subset c(I) \subset \ell^\infty(I).$$

Theorem

If p = c then there is an admissible ideal I such that $M(I) = \ell^{\infty}(I)$.

$$\rho = \min\{|A| \colon A \subset [\mathbb{N}]^{\mathbb{N}} \text{ has SFIP}, \ \neg (\exists X \in [\mathbb{N}]^{\mathbb{N}}) (\forall Y \in A) X \subset {}^*Y \}.$$

- A IB N - A IB N - -